CHAPTER 3

SIGNALS & SYSTEMS

	YEAR 2012	ONE MARK	
MCQ 3.1	If $x[n] = (1/3)^{ n } - (1/2)^n u[n]$, then the z-transform in the z-plane will be	region of convergence (ROC) of its	
	(A) $\frac{1}{3} < z < 3$	(B) $\frac{1}{3} < z < \frac{1}{2}$	
	(C) $\frac{1}{2} < z < 3$	(D) $\frac{1}{3} < z $	
MCQ 3.2	The unilateral Laplace transform of $f(t)$ transform of $tf(t)$ is	is $\frac{1}{s^2 + s + 1}$. The unilateral Laplace	
	(A) $-\frac{s}{(s^2+s+1)^2}$	(B) $-\frac{2s+1}{(s^2+s+1)^2}$	
	(C) $\frac{s}{(s^2+s+1)^2}$	(D) $\frac{2s+1}{(s^2+s+1)^2}$	
	YEAR 2012	TWO MARKS	
MCQ 3.3	Let $y[n]$ denote the convolution of $h[n]$ and $g[n]$ is a causal sequence. If $y[0] = 1$ (A) 0	and $g[n]$, where $h[n] = (1/2)^n u[n]$ and $y[1] = 1/2$, then $g[1]$ equals (B) $1/2$	
	(C) 1	(D) $3/2$	
MCQ 3.4	The Fourier transform of a signal $h(t)$ value of $h(0)$ is	is $H(j\omega) = (2\cos\omega)(\sin 2\omega)/\omega$. The	
	(A) 1/4	(B) 1/2	
	(C) 1	(D) 2	
MCQ 3.5	The input $x(t)$ and output $y(t)$ of a system a . The system is	are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$	
	(A) time-invariant and stable		
	(B) stable and not time-invariant		
	(C) time-invariant and not stable		
	(D) not time-invariant and not stable		

MCQ 3.9 The response h(t) of a linear time invariant system to an impulse $\delta(t)$, under initially relaxed condition is $h(t) = e^{-t} + e^{-2t}$. The response of this system for a unit step input u(t) is (A) $u(t) + e^{-t} + e^{-2t}$ (B) $(e^{-t} + e^{-2t}) u(t)$

(C) $(1.5 - e^{-t} - 0.5e^{-2t})u(t)$ (D) $e^{-t}\delta(t) + e^{-2t}u(t)$

YEAR 2010

MCQ 3.10 For the system 2/(s+1), the approximate time taken for a step response to reach 98% of the final value is

(A) 1 s (C) 4 s (D) 8 s

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

ONE MARK

SIGNALS	& SYSTEMS
---------	-----------

MCQ 3.11 The period of the signal $x(t) = 8\sin\left(0.8\pi t + \frac{\pi}{4}\right)$ is (A) 0.4π s (B) 0.8π s (C) 1.25 s (D) 2.5 s

MCQ 3.12 The system represented by the input-output relationship

$$y(t) = \int_{-\infty}^{5t} x(\tau) \, d\tau, t > 0$$

(A) Linear and causal

- (C) Causal but not linear (D) Neither liner nor causal
- **MCQ 3.13** The second harmonic component of the periodic waveform given in the figure has an amplitude of

MCQ 3.14 x(t) is a positive rectangular pulse from t = -1 to t = +1 with unit height as shown in the figure. The value of $\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$ {where $X(\omega)$ is the Fourier transform of x(t)} is.

MCQ 3.15 Given the finite length input x[n] and the corresponding finite length output y[n] of an LTI system as shown below, the impulse response h[n] of the system is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY	ISBN: 9788192276243		
Visit us at: www.nodia.co.in			

PAGE 117

TWO MARKS

PAGE 118

SIGNALS & SYSTEMS

Common Data Questions Q.6-7.

Given f(t) and g(t) as show below

YEAR 2009

ONE MARK

MCQ 3.18 A Linear Time Invariant system with an impulse response h(t) produces output y(t) when input x(t) is applied. When the input $x(t-\tau)$ is applied to a system with impulse response $h(t-\tau)$, the output will be (A) $y(\tau)$ (B) $y(2(t-\tau))$ (C) $y(t-\tau)$ (D) $y(t-2\tau)$

YEAR 2009

TWO MARKS

- MCQ 3.19 A cascade of three Linear Time Invariant systems is causal and unstable. From this, we conclude that
 - (A) each system in the cascade is individually causal and unstable
 - (B) at least on system is unstable and at least one system is causal
 - (C) at least one system is causal and all systems are unstable

GATE Previous Year Solved Paper B	y RK Kanodia & Ashish Murolia
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

CHAP 3	SIGNALS & SYSTEMS	PAGE 119
	(D) the majority are unstable and the majority are causal	
MCQ 3.20	The Fourier Series coefficients of a periodic signal $x(t) = x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$ are given by $a_{\cdot 2} = 2 - j1$, $a_{-1} = 0.5 + j0$ $a_1 = 0.5 - j0.2$, $a_2 = 2 + j1$ and $a_k = 0$ for $ k > 2$ Which of the following is true ? (A) $x(t)$ has finite energy because only finitely many coefficient zero (B) $x(t)$ has zero average value because it is periodic	xpressed as 0.2, $a_0 = j2$, nts are non-
	(C) The imaginary part of $x(t)$ is constant	
	(D) The real part of $x(t)$ is even	
MCQ 3.21	The z-transform of a signal $x[n]$ is given by $4z^{-3} + 3z^{-1} + 2 - 6z^2$ It is applied to a system, with a transfer function $H(z) = 3z^{-1} - 4z^2$ Let the output be $y[n]$. Which of the following is true ? (A) $y[n]$ is non causal with finite support (B) $y[n]$ is causal with infinite support (C) $y[n] = 0; n > 3$ (D) $\operatorname{Re}[Y(z)]_{z=e^{i\theta}} = -\operatorname{Re}[Y(z)]_{z=e^{-i\theta}}$ $\operatorname{Im}[Y(z)]_{z=e^{i\theta}} = \operatorname{Im}[Y(z)]_{z=e^{-i\theta}}; -\pi \le \theta < \pi$	$+2z^{3}$ 2
MCQ 3.22	The impulse response of a causal linear time-invariant system $h(t)$. Now consider the following two statements : Statement (I) : Principle of superposition holds Statement (II) : $h(t) = 0$ for $t < 0$ Which one of the following statements is correct ? (A) Statements (I) is correct and statement (II) is wrong (B) Statements (II) is correct and statement (I) is wrong (C) Both Statement (I) and Statement (II) are wrong (D) Both Statement (I) and Statement (II) are correct	is given as
MCQ 3.23	A signal $e^{-\alpha t} \sin(\omega t)$ is the input to a real Linear Time Invari Given K and ϕ are constants, the output of the system will be $Ke^{-\beta t}\sin(vt+\phi)$ where (A) β need not be equal to α but v equal to ω (B) v need not be equal to ω but β equal to α (C) β equal to α and v equal to ω (D) β need not be equal to α and v need not be equal to ω	ant system. of the form
	GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
	Published by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.in	3

	www.gatehelp.com				
PAGE 120	SIGNALS & SYSTEMS CHAP 3	i			
	YEAR 2008 TWO MARKS	5			
MCQ 3.24	A system with $x(t)$ and output $y(t)$ is defined by the input-output relation $y(t) = \int_{-\infty}^{-2t} (t) d\tau$:			
	The system will be (A) Casual, time-invariant and unstable				
	(A) Casual, time-invariant and unstable				
	(C) non-casual time-invariant and unstable				
	(D) non-casual, time-variant and unstable				
MCQ 3.25	A signal $x(t) = \operatorname{sinc}(\alpha t)$ where α is a real constant $(\operatorname{sinc}(x) = \frac{\operatorname{sin}(\pi x)}{\pi x})$ is the input to a Linear Time Invariant system whose impulse response $h(t) = \operatorname{sinc}(\beta t)$, where β is a real constant. If $\min(\alpha, \beta)$ denotes the minimum of α and β and similarly, $\max(\alpha, \beta)$ denotes the maximum of α and β , and K is a constant, which one of the following statements is true about the output of the system ?	5 9 1 1 2			
	(A) It will be of the form $K \operatorname{sinc}(\gamma t)$ where $\gamma = \min(\alpha, \beta)$ (B) It will be of the form. We as (α, t) where $\alpha = \max(\alpha, \beta)$				
	(B) It will be of the form $K \operatorname{sinc}(\gamma t)$ where $\gamma = \max(\alpha, \beta)$ (C) It will be of the form $K \operatorname{sinc}(\alpha t)$				

(D) It can not be a sinc type of signal

MCQ 3.26 Let x(t) be a periodic signal with time period T, Let $y(t) = x(t - t_0) + x(t + t_0)$ for some t_0 . The Fourier Series coefficients of y(t) are denoted by b_k . If $b_k = 0$ for all odd k, then t_0 can be equal to (A) T/8 (B) T/4(C) T/2 (D) 2T

- **MCQ 3.27** H(z) is a transfer function of a real system. When a signal $x[n] = (1+j)^n$ is the input to such a system, the output is zero. Further, the Region of convergence (ROC) of $(1 \frac{1}{2}z^{-1})$ H(z) is the entire Z-plane (except z = 0). It can then be inferred that H(z) can have a minimum of
 - (A) one pole and one zero
 - (B) one pole and two zeros
 - (C) two poles and one zero
 - D) two poles and two zeros

MCQ 3.28 Given $X(z) = \frac{z}{(z-a)^2}$ with |z| > a, the residue of $X(z) z^{n-1}$ at z = a for $n \ge 0$ will be (A) a^{n-1} (B) a^n (C) na^n (D) na^{n-1}

SIGNALS & SYSTEMS

PAGE 121

ONE MARK

MCQ 3.29 Let $x(t) = \operatorname{rect}(t - \frac{1}{2})$ (where $\operatorname{rect}(x) = 1$ for $-\frac{1}{2} \le x \le \frac{1}{2}$ and zero otherwise. If $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$, then the FTof x(t) + x(-t) will be given by (A) $\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$ (B) $2\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$ (C) $2\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)\operatorname{cos}\left(\frac{\omega}{2}\right)$ (D) $\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)\operatorname{sin}\left(\frac{\omega}{2}\right)$

MCQ 3.30 Given a sequence x[n], to generate the sequence y[n] = x[3 - 4n], which one of the following procedures would be correct?

- (A) First delay x(n) by 3 samples to generate $z_1[n]$, then pick every 4^{th} sample of $z_1[n]$ to generate $z_2[n]$, and than finally time reverse $z_2[n]$ to obtain y[n].
- (B) First advance x[n] by 3 samples to generate $z_1[n]$, then pick every 4th sample of $z_1[n]$ to generate $z_2[n]$, and then finally time reverse $z_2[n]$ to obtain y[n]
- (C) First pick every fourth sample of x[n] to generate $v_1[n]$, time-reverse $v_1[n]$ to obtain $v_2[n]$, and finally advance $v_2[n]$ by 3 samples to obtain y[n]
- (D) First pick every fourth sample of x[n] to generate $v_1[n]$, time-reverse $v_1[n]$ to obtain $v_2[n]$, and finally delay $v_2[n]$ by 3 samples to obtain y[n]

YEAR 2007

MCQ 3.31 Let a signal $a_1 \sin(\omega_1 t + \phi)$ be applied to a stable linear time variant system. Let the corresponding steady state output be represented as $a_2 F(\omega_2 t + \phi_2)$. Then which of the following statement is true?

n a t o

- (A) F is not necessarily a "Sine" or "Cosine" function but must be periodic with $\omega_1 = \omega_2$.
- (B) F must be a "Sine" or "Cosine" function with $a_1 = a_2$
- (C) F must be a "Sine" function with $\omega_1 = \omega_2$ and $\phi_1 = \phi_2$
- (D) F must be a "Sine" or "Cosine" function with $\omega_1 = \omega_2$
- **MCQ 3.32** The frequency spectrum of a signal is shown in the figure. If this is ideally sampled at intervals of 1 ms, then the frequency spectrum of the sampled signal will be

 $|U(j\omega)|$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

CHAP 3

MCQ 3.33 A signal
$$x(t)$$
 is given by

$$\begin{aligned}
x(t) &= \begin{cases}
1, -T/4 < t \le 3T/4 \\
-1, 3T/4 < t \le 7T/4 \\
-x(t+T)
\end{aligned}$$
Which among the following gives the fundamental fourier term of $x(t)$?
(A) $\frac{4}{\pi} \cos\left(\frac{\pi t}{T} - \frac{\pi}{4}\right)$
(B) $\frac{\pi}{4} \cos\left(\frac{\pi t}{2T} + \frac{\pi}{4}\right)$

(C)
$$\frac{4}{\pi} \sin\left(\frac{\pi t}{T} - \frac{\pi}{4}\right)$$
 (D) $\frac{\pi}{4} \sin\left(\frac{\pi t}{2T} + \frac{\pi}{4}\right)$

Statement for Linked Answer Question 34 and 35:

MCQ 3.34 A signal is processed by a causal filter with transfer function G(s)For a distortion free output signal wave form, G(s) must

- (A) provides zero phase shift for all frequency
- (B) provides constant phase shift for all frequency

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY	ISBN: 9788192276243		
Visit us at: www.nodia.co.in			

SIGNALS & SYSTEMS

PAGE 123

(C) provides linear phase shift that is proportional to frequency

(D) provides a phase shift that is inversely proportional to frequency

MCQ 3.35 $G(z) = \alpha z^{-1} + \beta z^{-3}$ is a low pass digital filter with a phase characteristics same as that of the above question if

(A) $\alpha = \beta$ (B) $\alpha = -\beta$ (C) $\alpha = \beta^{(1/3)}$ (D) $\alpha = \beta^{(-1/3)}$

MCQ 3.36 Consider the discrete-time system shown in the figure where the impulse response of G(z) is $g(0) = 0, g(1) = g(2) = 1, g(3) = g(4) = \cdots = 0$

This system is stable for range of values of K

(A) $[-1, \frac{1}{2}]$	(B) $[-1, 1]$
(C) $\left[-\frac{1}{2}, 1\right]$	(D) $\left[-\frac{1}{2}, 2\right]$

- MCQ 3.37 If u(t), r(t) denote the unit step and unit ramp functions respectively and u(t) * r(t) their convolution, then the function u(t+1) * r(t-2) is given by (A) $\frac{1}{2}(t-1)u(t-1)$ (B) $\frac{1}{2}(t-1)u(t-2)$ (C) $\frac{1}{2}(t-1)^2u(t-1)$ (D) None of the above
- **MCQ 3.38** $X(z) = 1 3z^{-1}, \ Y(z) = 1 + 2z^{-2}$ are Z transforms of two signals x[n], y[n] respectively. A linear time invariant system has the impulse response h[n] defined by these two signals as h[n] = x[n-1] * y[n] where * denotes discrete time convolution. Then the output of the system for the input $\delta[n-1]$ (A) has Z-transform $z^{-1}X(z) Y(z)$
 - (B) equals $\delta[n-2] 3\delta[n-3] + 2\delta[n-4] 6\delta[n-5]$
 - (C) has Z-transform $1 3z^{-1} + 2z^{-2} 6z^{-3}$
 - (D) does not satisfy any of the above three

YEAR 2006

ONE MARK

MCQ 3.39 The following is true

- (A) A finite signal is always bounded
- (B) A bounded signal always possesses finite energy
- (C) A bounded signal is always zero outside the interval $[-t_0, t_0]$ for some t_0
- (D) A bounded signal is always finite

	PAGE 124
--	-----------------

SIGNALS & SYSTEMS

TWO MARKS

- **MCQ 3.40** x(t) is a real valued function of a real variable with period T. Its trigonometric Fourier Series expansion contains no terms of frequency $\omega = 2\pi (2k) / T; k = 1, 2 \cdots$ Also, no sine terms are present. Then x(t) satisfies the equation (A) x(t) = -x(t - T)
 - (B) x(t) = x(T-t) = -x(-t)
 - (C) x(t) = x(T-t) = -x(t-T/2)
 - (D) x(t) = x(t T) = x(t T/2)

MCQ 3.41 A discrete real all pass system has a pole at $z = 2 \angle 30^\circ$: it, therefore (A) also has a pole at $\frac{1}{2} \angle 30^\circ$

- (B) has a constant phase response over the z-plane: $\arg |H(z)| = \text{constant}$ constant
- (C) is stable only if it is anti-causal
- (D) has a constant phase response over the unit circle: $\arg |H(e^{i\Omega})| = \text{constant}$

YEAR 2006

MCQ 3.42 x[n] = 0; n < -1, n > 0, x[-1] = -1, x[0] = 2 is the input and y[n] = 0; n < -1, n > 2, y[-1] = -1 = y[1], y[0] = 3, y[2] = -2 is the output of a discrete-time LTI system. The system impulse response h[n] will be (A) h[n] = 0; n < 0, n > 2, h[0] = 1, h[1] = h[2] = -1(B) h[n] = 0; n < -1, n > 1, h[-1] = 1, h[0] = h[1] = 2(C) h[n] = 0; n < 0, n > 3, h[0] = -1, h[1] = 2, h[2] = 1(D) h[n] = 0; n < -2, n > 1, h[-2] = h[1] = h[-1] = -h[0] = 3MCQ 3.43 The discrete-time signal $x[n] \longleftrightarrow X(z) = \sum_{n=0}^{\infty} \frac{3^n}{2+n} z^{2n}$, where \longleftrightarrow denotes a transform-pair relationship, is orthogonal to the signal (A) $y_1[n] \leftrightarrow Y_1(z) = \sum_{n=0}^{\infty} (\frac{2}{3})^n z^n$ (B) $y_2[n] \leftrightarrow Y_2(z) = \sum_{n=0}^{\infty} (5^n - n) z^{-(2n+1)}$ (C) $y_3[n] \leftrightarrow Y_3(z) = \sum_{n=-\infty}^{\infty} 2^{-|n|} z^n$

(D) $y_4[n] \leftrightarrow Y_4(z) = 2z^{-4} + 3z^{-2} + 1$

MCQ 3.44 A continuous-time system is described by $y(t) = e^{-|x(t)|}$, where y(t) is the output and x(t) is the input. y(t) is bounded

- (A) only when x(t) is bounded
- (B) only when x(t) is non-negative

SIGNALS & SYSTEMS

- (C) only for $t \leq 0$ if x(t) is bounded for $t \geq 0$
- (D) even when x(t) is not bounded
- **MCQ 3.45** The running integration, given by $y(t) = \int_{-\infty}^{t} x(t') dt'$
 - (A) has no finite singularities in its double sided Laplace Transform Y(s)
 - (B) produces a bounded output for every causal bounded input
 - (C) produces a bounded output for every anticausal bounded input
 - (D) has no finite zeroes in its double sided Laplace Transform Y(s)

YEAR 2005

TWO MARKS

MCQ 3.46 For the triangular wave from shown in the figure, the RMS value of the voltage is equal to

MCQ 3.47
MCQ 3.48

$$V(t) = \frac{1}{1 - \frac{1}{1 - \frac{1}{2}}} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2} \frac{1}{2T} \frac{1}{2$$

MCQ 3.49 If u(t) is the unit step and $\delta(t)$ is the unit impulse function, the inverse z

(D) $0.5 - 0.5 \cos 2x$

- -transform of $F(z) = \frac{1}{z+1}$ for k > 0 is
 - (A) $(-1)^k \delta(k)$ (B) $\delta(k) - (-1)^k$ (C) $(-1)^k u(k)$ (D) $u(k) - (-1)^k$

Visit us at: www.nodia.co.in

102111770017

Common data Questions Q.57-58*

Consider the voltage waveform v as shown in figure

PAGE 128		SIGNALS & SYSTEMS	CHAP 3
MCQ 3.57	The DC component of	of v is	
	(A) 0.4	(B) 0.2	
	(C) 0.8	(D) 0.1	
MCQ 3.58	The amplitude of fun	damental component of v is	
	(A) 1.20 V	(B) 2.40 V	
	(C) 2 V	(D) 1 V	
	$(\circ) = \cdot$	(-)	

SOLUTION

Option (C) is correct. **SOL 3.1**

$$x[n] = \left(\frac{1}{3}\right)^{|n|} - \left(\frac{1}{2}\right)^{n} u[n]$$

= $\left(\frac{1}{3}\right)^{n} u[n] + \left(\frac{1}{3}\right)^{-n} u[-n-1] - \left(\frac{1}{2}\right)^{n} u(n)$

Taking z-transform

$$X[z] = \sum_{n=-\infty}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} u[n] + \sum_{n=-\infty}^{\infty} \left(\frac{1}{3}\right)^{-n} z^{-n} u[-n-1]$$

$$- \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} u[n] = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} + \sum_{n=-\infty}^{-1} \left(\frac{1}{3}\right)^{-n} z^{-n} - \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n}$$

$$= \sum_{\substack{n=0\\ I}}^{\infty} \left(\frac{1}{3z}\right)^n + \sum_{\substack{m=1\\ II}}^{\infty} \left(\frac{1}{3z}\right)^m - \sum_{\substack{n=0\\ III}}^{\infty} \left(\frac{1}{2z}\right)^n$$
 Taking $m = -n$

Series I converges if $\left|\frac{1}{3z}\right| < 1$ or $|z| > \frac{1}{3}$ Series II converges if $\left|\frac{1}{3}z\right| < 1$ or |z| < 3Series III converges if $\left|\frac{1}{2z}\right| < 1$ or $\left|z\right| > \frac{1}{2}$ Region of convergence of X(z) will be intersection of above three ROC : $\frac{1}{2} < |z| < 3$ So,

SOL 3.2 Option (D) is correct. Using s-domain differentiation property of Laplace transform. $f(t) \longleftrightarrow F(s)$ If

50,
$$tf(t) \xleftarrow{\mathcal{L}} - \frac{dF(s)}{ds}$$
$$\mathcal{L}[tf(t)] = \frac{-d}{ds} \left[\frac{1}{s^2 + s + 1} \right] = \frac{2s + 1}{(s^2 + s + 1)^2}$$

S

Option (A) is correct. **SOL 3.3** Convolution sum is defined as

$$y[n] = h[n] * g[n] = \sum_{k=-\infty}^{\infty} h[n] g[n-k]$$

For causal sequence, $y[n] = \sum_{k=0}^{\infty} h[n] g[n-k]$
 $y[n] = h[n] g[n] + h[n] g[n-1] + h[n] g[n-2] + \dots$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

PAGE 130		SIGNALS & SYSTEMS	CHAP 3
	For $n = 0$,	y[0] = h[0] g[0] + h[1] g[-1] - = h[0] g[0] = h[0] g[0]	+ $g[-1] = g[-2] =0$ (i)
	For $n = 1$,	y[1] = h[1] g[1] + h[1] g[0] + h $= h[1] g[1] + h[1] g[0]$	$h[1]g[-1] + \dots$
		$\frac{1}{2} = \frac{1}{2}g[1] + \frac{1}{2}g[0]$	$h[1] = \left(\frac{1}{2}\right)^1 = \frac{1}{2}$
		1 = g[1] + g[0] $a[1] = 1 - a[0]$	
	From equation (i),	$g[0] = \frac{y[0]}{h[0]} = \frac{1}{1} = 1$	
	So,	g[1] = 1 - 1 = 0	

SOL 3.4 Option (C) is correct.

$$H(j\omega) = \frac{(2\cos\omega)(\sin 2\omega)}{\omega} = \frac{\sin 3\omega}{\omega} + \frac{\sin \omega}{\omega}$$

We know that inverse Fourier transform of $\sin c$ function is a rectangular function.

So, inverse Fourier transform of $H(j\omega)$ $h(t) = h_1(t) + h_2(t)$ $h(0) = h_1(0) + h_2(0) = \frac{1}{2} + \frac{1}{2} = 1$

SOL 3.5 Option (D) is correct.

$$y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) \, d\tau$$

CHAP 3

SIGNALS & SYSTEMS

Time invariance :

Let,

$$\begin{aligned} x(t) &= \delta(t) \\ y(t) &= \int_{-\infty}^t \delta(t) \cos(3\tau) \, d\tau = u(t) \cos(0) = u(t) \end{aligned}$$

For a delayed input $(t - t_0)$ output is

$$y(t,t_0) = \int_{-\infty}^{t} \delta(t-t_0) \cos(3\tau) \, d\tau = u(t) \cos(3t_0)$$

Delayed output

$$y(t - t_0) = u(t - t_0)$$

 $y(t, t_0) \neq y(t - t_0)$

System is not time invariant.

Stability :

Consider a bounded input $x(t) = \cos 3t$

$$y(t) = \int_{-\infty}^{t} \cos^2 3t = \int_{-\infty}^{t} \frac{1 - \cos 6t}{2} = \frac{1}{2} \int_{-\infty}^{t} 1 dt - \frac{1}{2} \int_{-\infty}^{t} \cos 6t \, dt$$

As $t \to \infty$, $y(t) \to \infty$ (unbounded) System is not stable.

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \omega t + b_n \sin n\omega t)$$

- The given function f(t) is an even function, therefore $b_n = 0$
- f(t) is a non-zero average value function, so it will have a non-zero value of a_0

$$a_0 = \frac{1}{(T/2)} \int_0^{T/2} f(t) dt$$
 (average value of $f(t)$)

• a_n is zero for all even values of n and non zero for odd n

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) d(\omega t)$$

So, Fourier expansion of f(t) will have a_0 and a_n , $n = 1, 3, 5... \infty$

SOL 3.7 Option (A) is correct.

$$x(t) = e^{-t}$$

Laplace transformation

SIGNALS & SYSTEMS

$$X(s) = \frac{1}{s+1}$$
$$y(t) = e^{-2t}$$
$$Y(s) = \frac{1}{s+2}$$

Convolution in time domain is equivalent to multiplication in frequency domain.

$$z(t) = x(t) * y(t)$$

$$Z(s) = X(s) Y(s) = \left(\frac{1}{s+1}\right) \left(\frac{1}{s+2}\right)$$

By partial fraction and taking inverse Laplace transformation, we get

$$Z(s) = \frac{1}{s+1} - \frac{1}{s+2}$$
$$z(t) = e^{-t} - e^{-2t}$$

SOL 3.8 Option
$$(D)$$
 is correct.

$$f(t) \xleftarrow{\mathcal{L}} F_{1}(s)$$

$$f(t-\tau) \xleftarrow{\mathcal{L}} e^{-s\tau} F_{1}(s) = F_{2}(s)$$

$$G(s) = \frac{F_{2}(s) F_{1}^{*}(s)}{|F_{1}(s)|^{2}} = \frac{e^{-s\tau} F_{1}(s) F_{1}^{*}(s)}{|F_{1}(s)|^{2}}$$

$$= \frac{e^{-s\tau}}{|F_{1}(s)|^{2}} \{\because F_{1}(s) F_{1}^{*}(s) = |F_{1}(s)|^{2}$$

$$= e^{-s\tau}$$

Taking inverse Laplace transform

$$g(t) = \mathcal{L}^{-1}[e^{-s\tau}] = \delta(t-\tau)$$

SOL 3.9 Option (C) is correct.

$$h(t) = e^{-t} + e^{-2t}$$

Laplace transform of h(t) i.e. the transfer function

$$H(s) = \frac{1}{s+1} + \frac{1}{s+2}$$

For unit step input

$$r(t) = \mu(t)$$
$$R(s) = \frac{1}{s}$$

or

Output,
$$Y(s) = \frac{1}{R}(s)H(s) = \frac{1}{s}\left[\frac{1}{s+1} + \frac{1}{s+2}\right]$$

By partial fraction

$$Y(s) = \frac{3}{2s} - \frac{1}{s+1} - \left(\frac{1}{s+2}\right)\frac{1}{2}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CHAP 3

SIGNALS & SYSTEMS

Taking inverse Laplace

$$y(t) = \frac{3}{2}u(t) - e^{-t}u(t) - \frac{e^{-2t}u(t)}{2}$$
$$= u(t)[1.5 - e^{-t} - 0.5e^{-2t}]$$

SOL 3.10 Option (C) is correct. System is given as

$$H(s) = \frac{2}{(s+1)}$$

Step input

$$R(s) = \frac{1}{s}$$

Output

$$Y(s) = H(s)R(s) = \frac{2}{(s+1)}\left(\frac{1}{s}\right) = \frac{2}{s} - \frac{2}{(s+1)}$$

Taking inverse Laplace transform

$$y(t) = (2 - 2e^{-t})u(t)$$

Final value of y(t),

2

$$y_{ss}(t) = \lim_{t \to \infty} y(t) = 2$$

Let time taken for step response to reach 98% of its final value is t_s . So,

$$-2e^{-t_s} = 2 \times 0.98$$

 $0.02 = e^{-t_s}$
 $t_s = \ln 50 = 3.91$ sec.

SOL 3.11 Option (D) is correct. Period of x(t),

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{0.8\pi} = 2.5 \sec^{-1}$$

SOL 3.12 Option (B) is correct. Input output relationship

$$y(t) = \int_{-\infty}^{5t} x(\tau) \, d\tau, \qquad t > 0$$

Causality :

- y(t) depends on x(5t), t > 0 system is non-causal.
- For example t = 2
- y(2) depends on x(10) (future value of input)

Linearity :

Output is integration of input which is a linear function, so system is linear.

SIGNALS & SYSTEMS

SOL 3.13 Option (A) is correct. Fourier series of given function

$$\begin{aligned} x(t) &= A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t \\ \because x(t) &= -x(t) \text{ odd function} \end{aligned}$$

So,
$$\begin{aligned} A_0 &= 0 \\ a_n &= 0 \end{aligned}$$
$$\begin{aligned} b_n &= \frac{2}{T} \int_0^T x(t) \sin n\omega_0 t \, dt \\ &= \frac{2}{T} \bigg[\int_0^{T/2} (1) \sin n\omega_0 t \, dt + \int_{T/2}^T (-1) \sin n\omega_0 t \, dt \bigg] \end{aligned}$$
$$\begin{aligned} &= \frac{2}{T} \bigg[\bigg(\frac{\cos n\omega_0 t}{-n\omega_0} \bigg)_0^{T/2} - \bigg(\frac{\cos n\omega_0 t}{-n\omega_0} \bigg)_{T/2}^T \bigg] \\ &= \frac{2}{n\omega_0 T} [(1 - \cos n\pi) + (\cos 2n\pi - \cos n\pi)] \end{aligned}$$
$$\begin{aligned} &= \frac{2}{n\pi} [1 - (-1)^n] \\ b_n &= \begin{cases} -\frac{4}{n\pi}, n \text{ odd} \\ 0, n \text{ even} \end{cases} \end{aligned}$$

So only odd harmonic will be present in x(t)For second harmonic component (n = 2) amplitude is zero.

SOL 3.14 Option (D) is correct. By parsval's theorem

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \int_{-\infty}^{\infty} x^2(t) dt$$
$$\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = 2\pi \times 2 = 4\pi$$

SOL 3.15Option (C) is correct.Given sequences
$$x$$

$$x[n] = \{ \underbrace{1}_{\uparrow}, -1 \}, \quad 0 \le n \le 1$$

help

$$y[n] = \{ 1, 0, 0, 0, -1 \}, \ 0 \le n \le 4$$

If impulse response is h[n] then

$$y[n] = h[n] * x[n]$$

Length of convolution (y[n]) is 0 to 4, x[n] is of length 0 to 1 so length of h[n] will be 0 to 3.

Let

 $h[n] = \{ \underset{\uparrow}{a, b, c, d} \}$

PAGE 135

Convolution

$$y[n] = \{ \underset{\uparrow}{a, -a+b, -b+c, -c+d, -d} \}$$

$$a = 1$$

$$-a+b = 0 \Rightarrow b = a = 1$$

$$-b+c = 0 \Rightarrow c = b = 1$$

$$-c+d = 0 \Rightarrow d = c = 1$$
So,
$$h[n] = \{1,1,1,1\}$$

Option (D) is correct. **SOL 3.16** We can observe that if we scale f(t) by a factor of $\frac{1}{2}$ and then shift, we will get g(t). пате Fi

First scale
$$f(t)$$
 by a factor of $\frac{1}{2}$
 $g_1(t) = f(t/2)$
 $g_1(t)$

g(t)

Shift
$$g_1(t)$$
 by 3, $g(t) = g_1(t-3) = f(\frac{t-3}{2})$

$$g(t) = f\left(\frac{t}{2} - \frac{3}{2}\right)$$

SOL 3.17 Option (C) is correct.
$$g(t)$$
 can be expressed as

SIGNALS & SYSTEMS

$$g(t) = u(t-3) - u(t-5)$$

By shifting property we can write Laplace transform of q(t)

$$G(s) = \frac{1}{s}e^{-3s} - \frac{1}{s}e^{-5s} = \frac{e^{-3s}}{s}(1 - e^{-2s})$$

SOL 3.18 Option (D) is correct.

Let

$$\begin{array}{ccc} x(t) & \xleftarrow{\mathcal{L}} X(s) \\ y(t) & \xleftarrow{\mathcal{L}} Y(s) \\ h(t) & \xleftarrow{\mathcal{L}} H(s) \end{array}$$

So output of the system is given as

$$Y(s) = X(s) H(s)$$
Now for input
$$x(t-\tau) \xleftarrow{\mathcal{L}} e^{-s\tau} X(s) \quad \text{(shifting property)}$$

$$h(t-\tau) \xleftarrow{\mathcal{L}} e^{-s\tau} H(s)$$
So now output is
$$Y(s) = e^{-s\tau} X(s) \cdot e^{-\tau s} H(s)$$

$$= e^{-2s\tau} X(s) H(s) = e^{-2s\tau} Y(s)$$

$$y'(t) = y(t-2\tau)$$

Option (B) is correct. **SOL 3.19**

So now

Let three LTI systems having response $H_1(z), H_2(z)$ and $H_3(z)$ are Cascaded as showing below

$$I/P \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow H_3(z) \longrightarrow H(z)$$

Assume $H_1(z) = z^2 + z^1 + 1$ (non-causal)

$$H_2(z) = z^3 + z^2 + 1$$
 (non-causal)

Overall response of the system

$$H(z) = H_1(z) H_2(z) H_3(z)$$

$$H(z) = (z^{2} + z^{1} + 1)(z^{3} + z^{2} + 1)H_{3}(z)$$

To make H(z) causal we have to take $H_3(z)$ also causal.

Let
$$H_3(z) = z^{-6} + z^{-4} + 1$$

= $(z^2 + z^1 + 1)(z^3 + z^2 + 1)(z^{-6} + z^{-4} + H(z) \rightarrow \text{causal}$

Similarly to make H(z) unstable at least one of the system should be unstable.

1)

Option (C) is correct. SOL 3.20 Given signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$$

Let ω_0 is the fundamental frequency of signal x(t)

$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} & \because \frac{2\pi}{T} = \omega_0 \\ x(t) &= a_{-2} e^{-j2\omega_0 t} + a_{-1} e^{-j\omega_0 t} + a_0 + a_1 e^{j\omega_0 t} + a_2 e^{j2\omega_0 t} \\ &= (2-j) e^{-2j\omega_0 t} + (0.5 + 0.2j) e^{-j\omega_0 t} + 2j + \\ &+ (0.5 - 0.2) e^{j\omega_0 t} + (2+j) e^{j2\omega_0 t} \\ &= 2[e^{-j2\omega_0 t} + e^{j2\omega_0 t}] + j[e^{j2\omega_0 t} - e^{-j2\omega_0 t}] + \\ &0.5[e^{j\omega_0 t} + e^{-j\omega_0 t}] - 0.2j[e^{+j\omega_0 t} - e^{-j\omega_0 t}] + 2j \\ &= 2(2\cos 2\omega_0 t) + j(2j\sin 2\omega_0 t) + 0.5(2\cos \omega_0 t) - \\ &0.2j(2j\sin \omega_0 t) + 2j \\ &= [4\cos 2\omega_0 t - 2\sin 2\omega_0 t + \cos \omega_0 t + 0.4\sin \omega_0 t] + 2j \\ \text{Im} [x(t)] &= 2 \pmod{2} \end{aligned}$$

SOL 3.21 Option (A) is correct.
Z-transform of
$$x[n]$$
 is
 $X(z) = 4z^{-3} + 3z^{-1} + 2 - 6z^2 + 2z^3$
Transfer function of the system
 $H(z) = 3z^{-1} - 2$
Output
 $Y(z) = H(z)X(z)$
 $Y(z) = (3z^{-1} - 2)(4z^{-3} + 3z^{-1} + 2 - 6z^2 + 2z^3)$
 $= 12z^{-4} + 9z^2 + 6z^{-1}$
 $18z + 6z^2 - 8z^{-3} - 6z^{-1} - 4 + 12z^2 - 4z^3$
 $= 12z^{-4} - 8z^{-3} + 9z^{-2} - 4 - 18z + 18z^2 - 4z^3$
Or sequence $y[n]$ is
 $y[n] = 12\delta[n-4] - 8\delta[n-3] + 9\delta[n-2] - 4\delta[n] - 18\delta[n+1] + 18\delta[n+2] - 4\delta[n+3]$

 $y[n] \neq 0, \ n < 0$ So y[n] is non-causal with finite support.

SOL 3.22 Option (D) is correct.

Since the given system is LTI, So principal of Superposition holds due to linearity.

For causal system h(t) = 0, t < 0Both statement are correct.

SOL 3.23 Option (C) is correct.

For an LTI system output is a constant multiplicative of input with same frequency.

SIGNALS & SYSTEMS

input $g(t) = e^{-\alpha t} \sin(\omega t)$ Here output $y(t) = Ke^{-\beta t} \sin(vt + \phi)$ Output will be in form of $Ke^{-\alpha t}\sin(\omega t + \phi)$ So $\alpha = \beta, v = \omega$

SOL 3.24 Option (D) is correct. Input-output relation

$$y(t) = \int_{-\infty}^{-2t} x(\tau) \, d\tau$$

Causality :

Since y(t) depends on x(-2t), So it is non-causal. **Time-variance :**

$$y(t) = \int_{-\infty}^{-2t} x(\tau - \tau_0) \, d\tau \neq y(t - \tau_0)$$

So this is time-variant.

Stability :

Output y(t) is unbounded for an bounded input. For example

Let

$$x(\tau) = e^{-\tau} \text{ (bounded)}$$
$$y(t) = \int_{-\infty}^{-2t} d\tau = \begin{bmatrix} e^{-\tau} \\ -1 \end{bmatrix}_{-\infty}^{-2t} \text{ Unbounded}$$

Output y(t) of the given system is **SOL 3.25**

y(t) = x(t) * h(t)

Or

 $Y(j\omega) = X(j\omega) H(j\omega)$ Given that, $x(t) = \operatorname{sinc}(\alpha t)$ and $h(t) = \operatorname{sinc}(\beta t)$

Fourier transform of x(t) and h(t) are

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

ω

SIGNALS & SYSTEMS

So,
$$Y(j\omega) = \text{K rect}\left(\frac{\omega}{2\gamma}\right)$$

Where $\gamma = \min(\alpha,\beta)$
And $y(t) = \text{K sinc}(\gamma t)$

Option (B) is correct. **SOL 3.26** Let a_k is the Fourier series coefficient of signal x(t) $y(t) = x(t - t_0) + x(t + t_0)$ Given Fourier series coefficient of y(t) $b_k = e^{-jk\omega t_0} a_k + e^{jk\omega t_0} a_k$ $b_k = 2a_k\cos k\omega t_0$ $b_k = 0$ (for all odd k) $k\omega t_0 = \frac{\pi}{2}, \ \mathbf{k} \to \text{odd}$ $k\frac{2\pi}{T}t_0 = \frac{\pi}{2}$ For k = 1, $t_0 = \frac{T}{4}$ Option () is correct. SOL 3.27 Option (D) is correct. **SOL 3.28** $X(z) = \frac{z}{(z-a)^2}, \quad z > a$ Given that Residue of $X(z) z^{n-1}$ at z = a is $=\frac{d}{dz}(z-a)^2 X(z) z^{n-1}|_{z=a}$ $= \frac{d}{dz}(z-a)^2 \frac{z}{(z-a)^2} z^{n-1} \Big|_{z=a}$ $= \frac{d}{dz} z^n \Big|_{z=a} = n z^{n-1} \Big|_{z=a} = n a^{n-1}$

SOL 3.29 Option (C) is correct. Given signal

$$\begin{aligned} x(t) &= \operatorname{rect}\left(t - \frac{1}{2}\right) \\ x(t) &= \begin{cases} 1, & -\frac{1}{2} \le t - \frac{1}{2} \le \frac{1}{2} & \text{or} & 0 \le t \le 1 \\ 0, & \text{elsewhere} \end{cases} \end{aligned}$$

Similarly

So,

$$x(-t) = \operatorname{rect}\left(-t - \frac{1}{2}\right)$$

$$\begin{aligned} x(-t) &= \begin{cases} 1, & -\frac{1}{2} \leq -t - \frac{1}{2} \leq \frac{1}{2} \quad \text{or} \quad -1 \leq t \leq 0\\ 0, & \text{elsewhere} \end{cases} \\ \mathcal{F}[x(t) + x(-t)] &= \int_{-\infty}^{\infty} x(t) \, e^{-j\omega t} \, dt + \int_{-\infty}^{\infty} x(-t) \, e^{-j\omega t} \, dt \\ &= \int_{0}^{1} (1) \, e^{-j\omega t} \, dt + \int_{-1}^{0} (1) \, e^{-j\omega t} \, dt \\ &= \left[\frac{e^{-j\omega t}}{-j\omega} \right]_{0}^{1} + \left[\frac{e^{-j\omega t}}{-j\omega} \right]_{-1}^{0} = \frac{1}{j\omega} (1 - e^{-j\omega}) + \frac{1}{j\omega} (e^{j\omega} - 1) \\ &= \frac{e^{-j\omega/2}}{j\omega} (e^{j\omega/2} - e^{-j\omega/2}) + \frac{e^{j\omega/2}}{j\omega} (e^{j\omega/2} - e^{-j\omega/2}) \\ &= \frac{(e^{j\omega/2} - e^{-j\omega/2}) (e^{-j\omega/2} + e^{j\omega/2})}{j\omega} \\ &= \frac{2}{\omega} \sin\left(\frac{\omega}{2}\right) \cdot 2\cos\left(\frac{\omega}{2}\right) = 2\cos\frac{\omega}{2}\operatorname{sin}\left(\frac{\omega}{2\pi}\right) \end{aligned}$$

SOL 3.30 Option (B) is correct.
In option (A)

$$z_1[n] = x[n-3]$$

 $z_2[n] = z_1[4n] = x[4n-3]$
 $y[n] = z_2[-n] = x[-4n-3] \neq x[3-4n]$
In option (B)
 $z_1[n] = x[n+3]$
 $z_2[n] = z_1[4n] = x[4n+3]$
 $y[n] = z_2[-n] = x[-4n+3]$
In option (C)
 $v_1[n] = x[4n]$
 $v_2[n] = v_1[-n] = x[-4n]$
 $y[n] = v_2[n+3] = x[-4(n+3)] \neq x[3-4n]$
In option (D)
 $v_1[n] = x[4n]$
 $v_2[n] = v_1[-n] = x[-4n]$
 $y[n] = v_2[n-3] = x[-4(n-3)] \neq x[3-4n]$

SOL 3.31 Option () is correct.

The spectrum of sampled signal $s(j\omega)$ contains replicas of $U(j\omega)$ at frequencies $\pm nf_s$.

Where
$$n = 0, 1, 2....$$

 $f_s = \frac{1}{T_s} = \frac{1}{1 \operatorname{m sec}} = 1 \operatorname{kHz}$

SIGNALS & SYSTEMS

PAGE 141

- **SOL 3.32** Option (D) is correct. For an LTI system input and output have identical wave shape (i.e. frequency of input-output is same) within a multiplicative constant (i.e. Amplitude response is constant) So F must be a sine or cosine wave with $\omega_1 = \omega_2$
- **SOL 3.33** Option (C) is correct. Given signal has the following wave-form

GATE Previous Year Solved Paper By	RK Kanodia & Ashish Murolia
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

CHAP 3

SIGNALS & SYSTEMS

Function $\mathbf{x}(t)$ is periodic with period 2T and given that

$$x(t) = -x(t+T)$$
 (Half-wave symmetric)

So we can obtain the fourier series representation of given function.

SOL 3.34 Option (C) is correct.

Output is said to be distortion less if the input and output have identical wave shapes within a multiplicative constant. A delayed output that retains input waveform is also considered distortion less.

Thus for distortion less output, input-output relationship is given as

$$y(t) = Kg(t - t_d)$$

Taking Fourier transform.

$$Y(\omega) = KG(\omega) e^{-j\omega t_d} = G(\omega) H(\omega)$$

 $H(\omega) \Rightarrow$ transfer function of the system

So, $H(\omega) = K e^{-j\omega t_d}$

Amplitude response $|H(\omega)| = K$

Phase response, $\theta_n(\omega) = -\omega t_d$ For distortion less output, phase response should be proportional to frequency.

- **SOL 3.35** Option (A) is correct. **B** $G(z)|_{z=e^{i\omega}} = \alpha e^{-i\omega} + \beta e^{-3j\omega}$ **C** for linear phase characteristic $\alpha = \beta$.
- **SOL 3.36** Option (A) is correct. System response is given as

Η

$$H(z) = \frac{G(z)}{1 - KG(z)}$$
$$g[n] = \delta[n-1] + \delta[n-2]$$
$$G(z) = z^{-1} + z^{-2}$$

 So

$$(z) = \frac{(z^{-1} + z^{-2})}{1 - K(z^{-1} + z^{-2})} = \frac{z + 1}{z^2 - Kz - K}$$

For system to be stable poles should lie inside unit circle.

$$\begin{split} |z| &\leq 1 \\ z &= \frac{K \pm \sqrt{K^2 + 4K}}{2} \leq 1 \ K \pm \sqrt{K^2 + 4K} \leq 2 \\ \sqrt{K^2 + 4K} &\leq 2 - K \\ K^2 + 4K &\leq 4 - 4K + K^2 \\ 8K &\leq 4 \\ K &\leq 1/2 \end{split}$$

SIGNALS & SYSTEMS

PAGE 143

Sol 3.37 Option (C) is correct.
Given Convolution is,

$$h(t) = u(t+1) * r(t-2)$$

Taking Laplace transform on both sides,
 $H(s) = \mathcal{L}[h(t)] = \mathcal{L}[u(t+1)] * \mathcal{L}[r(t-2)]$
We know that, $\mathcal{L}[u(t)] = 1/s$
 $\mathcal{L}[u(t+1)] = c^s(\frac{1}{s^2})$ (Time-shifting property)
and $\mathcal{L}[r(t)] = 1/s^2$
 $\mathcal{L} r(t-2) = c^{2s}(\frac{1}{s^2})$ (Time-shifting property)
So $H(s) = \left[c^s(\frac{1}{s^2})\right] \left[c^{2s}(\frac{1}{s^2})\right]$
 $H(s) = c^s(\frac{1}{s^2})$
Taking inverse Laplace transform
 $h(t) = \frac{1}{2}(t-1)^2 u(t-1)$
Sol 3.38 Option (C) is correct.
Impulse response of given **PTT** system.
 $h[n] = x[n - 1] + \mu[n]$
Taking z-transform on both sides
 $H(z) = z^{-1}X(z)Y(z)$
We have $X(z) = 1 - 3z^{-1}$ and $Y(z) = 1 + 2z^{-2}$
So
 $H(z) = z^{-1}(1 - 3z^{-1})(1 + 2z^{-2})$
Output of the system for input $u[n] = \delta[n-1]$ is,
 $y(z) = H(z)U(z)$ $U[n] + \frac{z}{-1} + 2z^{-4} - 6z^{-5}$
Taking inverse z-transform on both sides we have output.
 $y[n] = \delta[n-2] - 3\delta[n-3] + 2\delta[n-4] - 6\delta[n-5]$
Sol 3.39 Option (B) is correct.
A bounded signal always possesses some finite energy.
 $E = \int_{-\frac{1}{2}}^{\frac{1}{4}} |g(t)^2| dt < \infty$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CHAP 3

SIGNALS & SYSTEMS

SOL 3.40 Option (C) is correct. Trigonometric Fourier series is given as

$$x(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

Since there are no sine terms, so $b_n = 0$

$$b_n = \frac{2}{T_0} \int_0^{T_0} x(t) \sin n\omega_0 t \, dt$$

= $\frac{2}{T_0} \bigg[\int_0^{T_0/2} x(\tau) \sin n\omega_0 \tau \, d\tau + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \bigg]$

Where $\tau = T - t \Rightarrow d\tau = -dt$

$$= \frac{2}{T_0} \bigg[\int_{T_0}^{T_0/2} x(T-t) \sin n\omega_0 (T-t) (-dt) + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \bigg]$$

$$= \frac{2}{T_0} \bigg[\int_{T_0/2}^{T_0} x(T-t) \sin n \Big(\frac{2\pi}{T} T - t \Big) dt + \int_{T_0/2}^T x(t) \sin n\omega_0 t \, dt \bigg]$$

$$= \frac{2}{T_0} \bigg[\int_{T_0/2}^{T_0} x(T-t) \sin (2n\pi - n\omega_0) \, dt + \int_{T_0/2}^{T_0} x(t) \sin n\omega_0 t \, dt \bigg]$$

$$= \frac{2}{T_0} \bigg[- \int_{T_0/2}^{T_0} x(T-t) \sin (n\omega_0 t) \, dt + \int_{T_0/2}^{T_0} x(t) \sin n\omega_0 t \, dt \bigg]$$

 $b_n = 0$ if x(t) = x(T-t)

From half wave symmetry we know that if

$$x(t) = -x(t \pm \frac{T}{2}) \mathbf{1} \mathbf{C}$$

Then Fourier series of x(t) contains only odd harmonics.

SOL 3.41 Option (C) is correct.

Z-transform of a discrete all pass system is given as

$$H(z) = \frac{z^{-1} - z_0^*}{1 - z_0 z^{-1}}$$

It has a pole at z_0 and a zero at $1/z_0^*$.

Given system has a pole at

$$z = 2 \angle 30^{\circ} = 2\frac{(\sqrt{3}+j)}{2} = (\sqrt{3}+j)$$

system is stable if |z| < 1 and for this it is anti-causal.

SOL 3.42 Option (A) is correct.

According to given data input and output Sequences are

$$x[n] = \{-1, 2\}, -1 \le n \le 0$$
$$y[n] = \{-1, 3, -1, -2\}, -1 \le n \le 2$$

If impulse response of system is h[n] then output

$$y[n] = h[n] * x[n]$$

Since length of convolution (y[n]) is -1 to 2, x[n] is of length -1 to 0 so length of h[n] is 0 to 2.

Let
$$h[n] = \{a, b, c\}$$

Convolution

$$y[n] = \{-a, 2a \xrightarrow{a} b, 2b \xrightarrow{c} 2c\}$$

$$y[n] = \{-a, 2a \xrightarrow{a} b, 2b \xrightarrow{c} 2c\}$$

$$y[n] = \{-1, 3, -1, -2\}$$
So,
$$a = 1$$

$$2a - b = 3 \Rightarrow b = -1$$

$$2a - c = -1 \Rightarrow c = -1$$
Impulse response $h[n] = \{1, -1, -1\}$

SOL 3.43 Option () is correct.

- **SOL 3.44** Option (D) is correct. Output $y(t) = e^{-|x(t)|}$ If x(t) is unbounded, $|x(t)| \to \infty$ $y(t) = e^{-|x(t)|} \to 0$ (bounded) So y(t) is bounded even when x(t) is not bounded.
- **SOL 3.45** Option (B) is correct.

Given
$$y(t) = \int_{-\infty}^{t} x(t') dt'$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CHAP 3

SIGNALS & SYSTEMS

Laplace transform of y(t)

$$Y(s) = \frac{X(s)}{s}$$
, has a singularity at $s = 0$

For a causal bounded input, $y(t) = \int_{-\infty}^{t} x(t') dt'$ is always bounded.

Option (A) is correct. **SOL 3.46** RMS value is given by

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T V^2(t) \, dt}$$

Where

$$V(t) = \begin{cases} \left(\frac{2}{T}\right)t, 0 \le t \le \frac{T}{2} \\ 0, \quad \frac{T}{2} < t \le T \end{cases}$$
So
$$\frac{1}{T} \int_0^T V^2(t) dt = \frac{1}{T} \left[\int_0^{T/2} \left(\frac{2t}{T}\right)^2 dt + \int_{T/2}^T (0) dt \right]$$

$$= \frac{1}{T} \cdot \frac{4}{T^2} \int_0^{T/2} t^2 dt = \frac{4}{T^3} \left[\frac{t^3}{3} \right]_0^{T/2}$$

$$= \frac{4}{T^3} \times \frac{T^3}{24} = \frac{1}{6}$$

$$V_{rms} = \sqrt{\frac{1}{6}} \mathbf{y} \quad \mathbf{ate}$$
Option (A) is correct.
By final value theorem

Option (A) is correct. **SOL 3.47** By final value theorem

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} s \frac{(5s^2 + 23s + 6)}{s(s^2 + 2s + 2)}$$
$$= \frac{6}{2} = 3$$

SOL 3.48 Option (D) is correct. $f(x) = \sin^2 x = 1 - \cos 2x$

$$f(x) = \sin x - \frac{2}{2}$$
$$= 0.5 - 0.5 \quad \cos 2x$$
$$f(x) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 x + b_n \sin n\omega_0 x$$
$$f(x) = \sin^2 x \text{ is an even function so } b_n = 0$$

$$A_0 = 0.5$$

$$a_n = \begin{cases} -0.5, \ n = 1\\ 0, \ \text{otherwise} \end{cases}$$

$$\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{T} = 2$$

SIGNALS & SYSTEMS

SOL 3.49 Option (B) is correct.

Z-transform $F(z) = \frac{1}{z+1} = 1 - \frac{z}{z+1} = 1 - \frac{1}{1+z^{-1}}$ so, $f(k) = \delta(k) - (-1)^k$ Thus $(-1)^k \xleftarrow{z} \frac{1}{1+z^{-1}}$

SOL 3.50 Option (A) is correct. Root mean square value is given as

 $I_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} I^{2}(t) dt}$ From the graph, $I(t) = \begin{cases} -\left(\frac{12}{T}\right)t, 0 \le t < \frac{T}{2} \\ 6, \quad T/2 < t \le T \end{cases}$ So $\frac{1}{T} \int_{0}^{T} I^{2} dt = \frac{1}{T} \left[\int_{0}^{T/2} \left(\frac{-12t}{T}\right)^{2} dt + \int_{T/2}^{T} (6)^{2} dt \right] \\ = \frac{1}{T} \left(\frac{144}{T^{2}} \left[\frac{t^{3}}{8} \right]_{0}^{T/2} + 36[t]_{T/2}^{T} \right) \\ = \frac{1}{T} \left[\frac{144}{T^{2}} \left(\frac{T^{3}}{24} \right) + 36(\frac{T}{2}) \right] = \frac{1}{T} [6T + 18T] = 24 \end{cases}$ $I_{rms} \int \sqrt{24} \frac{1}{2} \sqrt{6} \Lambda$ Option (B) is correct. Total current in wire $I = 10 + 20 \sin \omega t$ $I_{rms} = \sqrt{(10)^{2} + \frac{(20)^{2}}{2}} = 17.32 \Lambda$

SOL 3.52 Option (C) is correct. Fourier series representation is given as

$$f(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

From the wave form we can write fundamental period $T = 2 \sec$

$$f(t) = \begin{cases} \left(\frac{4}{T}\right)t, & -\frac{T}{2} \le t \le 0\\ -\left(\frac{4}{T}\right)t, & 0 \le t \le \frac{T}{2} \end{cases}$$
$$f(t) = f(-t), & f(t) \text{ is an even function}$$
$$b_n = 0$$
$$A_0 = \frac{1}{T} \int_T f(t) dt$$

So,

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

CHAP 3

SOL 3.51

.

PAGE 148

SIGNALS & SYSTEMS

$$= \frac{1}{T} \left[\int_{-T/2}^{0} \left(\frac{4}{T}\right) t dt + \int_{0}^{T/2} \left(-\frac{4}{T}\right) t dt \right]$$

$$= \frac{1}{T} \left(\frac{4}{T} \left[\frac{t^{2}}{2}\right]_{-T/2}^{0} - \frac{4}{T} \left[\frac{t^{2}}{2}\right]_{0}^{T/2} \right)$$

$$= \frac{1}{T} \left[\frac{4}{T} \left(\frac{T^{2}}{8}\right) - \frac{4}{T} \left(\frac{T^{2}}{8}\right) \right] = 0$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T} f(t) \cos n\omega_{0} t dt$$

$$= \frac{2}{T} \left[\int_{-T/2}^{0} \left(\frac{4}{T}\right) t \cos n\omega_{0} t + \int_{0}^{T/2} \left(-\frac{4}{T}\right) t \cos n\omega_{0} t dt \right]$$

By solving the integration

$$a_n = \begin{cases} \frac{8}{n^2 \pi^2}, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$$

So,

$$f(t) = \frac{8}{\pi^2} \left[\cos \pi t + \frac{1}{9} \cos \left(3\pi t \right) + \frac{1}{25} \cos \left(5\pi t \right) + \dots \right]$$

Option (A) is correct. **SOL 3.53** Response for any input u(t) is given as

$$y(t) = u(t) * h(t) \qquad h(t) \rightarrow \text{ impulse response}$$
$$y(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

Impulse response h(t) and step response s(t) of a system is

$$h(t) = \frac{d}{dt}[s(t)]$$

So $y(t) = \int_{-\infty}^{\infty} u(\tau) \frac{d}{dt} s[t-\tau] d\tau = \frac{d}{dt} \int_{-\infty}^{\infty} u(\tau) s(t-\tau) d\tau$

SOL 3.54 Option (B) is correct. Final value theorem states that $\lim_{t \to \infty} y(t) \lim_{s \to \infty} Y(s)$

SOL 3.55 Option (D) is correct.

$$V_{rms} = \sqrt{rac{1}{T_0} \int_{T_0} V^2(t) dt}$$

here $T_0 = \pi$

$$\frac{1}{T_0} \int_{T_0}^{\infty} V^2(t) dt = \frac{1}{\pi} \left[\int_0^{\pi/3} (100)^2 dt + \int_{\pi/3}^{2\pi/3} (-100)^2 dt + \int_{2\pi/3}^{\pi} (100)^2 dt \right]$$
$$= \frac{1}{\pi} \left[10^4 \left(\frac{\pi}{3}\right) + 10^4 \left(\frac{\pi}{3}\right) + 10^4 \left(\frac{\pi}{3}\right) \right] = 10^4 \text{ V}$$

SIGNALS & SYSTEMS

$$V_{rms} = \sqrt{10^4} = 100 \text{ V}$$

Option (D) is correct. **SOL 3.56**

Let h(t) is the impulse response of system

$$\begin{aligned} y(t) &= u(t) * h(t) \\ y(t) &= \int_0^t u(\tau) h(t-\tau) d\tau \\ &= \int_0^t (2+t-\tau) e^{-3(t-\tau)} u(\tau) d\tau \end{aligned}$$

 $h(t) = (t+2) e^{-3t} u(t), t > 0$

 So

DC

Transfer function

$$H(s) = \frac{Y(s)}{U(s)} = \frac{1}{(s+3)^2} + \frac{2}{(s+3)}$$
$$= \frac{1+2s+6}{(s+3)^2} = \frac{(2s+7)}{(s+3)^2}$$

Option (B) is correct. SOL 3.57 Fourier series representation is given as

$$v(t) = A_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

period of given wave form $T = 5$ ms
DC component of v is
$$A_0 = \frac{1}{T} \int_{T} v(t) dt$$
$$= \frac{1}{5} \left[\int_{0}^{T} 1 dt + \int_{3}^{5} - 1 dt \right]$$
$$= \frac{1}{5} [3 - 5 + 3] = \frac{1}{5}$$

SOL 3.58 Option (A) is correct.
Coefficient,
$$a_n = \frac{2}{T} \int_{T}^{} v(t) \cos n\omega_0 t \, dt$$

 $= \frac{2}{5} \left[\int_{0}^{3} (1) \cos nwt \, dt + \int_{3}^{5} (-1) \cos nwt \, dt \right]$
 $= \frac{2}{5} \left(\left[\frac{\sin n\omega t}{n\omega} \right]_{0}^{3} - \left[\frac{\sin n\omega t}{n\omega} \right]_{3}^{5} \right)$
Put $\omega = \frac{2\pi}{T} = \frac{2\pi}{5}$

$$a_n = \frac{1}{n\pi} \left[\sin 3n\omega - \sin 5n\omega + \sin 3n\omega \right]$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

CHAP 3

PAGE 149

$$= \frac{1}{n\pi} \left[2\sin\left(3n\frac{2\pi}{5}\right) - \sin\left(5n\frac{2\pi}{5}\right) \right]$$
$$= \frac{1}{n\pi} \left[2\sin\left(\frac{6\pi n}{5}\right) - \sin\left(2n\pi\right) \right]$$
$$= \frac{2}{n\pi} \sin\left(\frac{6\pi n}{5}\right)$$
Coefficient, $b_n = \frac{2}{T} \int_T v(t) \sin n\omega_0 t \, dt$
$$= \frac{2}{5} \left[\int_0^3 (1) \sin nwt \, dt + \int_3^5 (-1) \sin nwt \, dt \right]$$
$$= \frac{2}{5} \left(\left[-\frac{\cos n\omega t}{n\omega} \right]_0^3 - \left[-\frac{\cos n\omega t}{n\omega} \right]_3^5 \right)$$
put
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{5}$$
$$b_n = \frac{1}{n\pi} \left[-\cos 3n\omega + 1 + \cos 5n\omega - \cos 3n\omega \right]$$
$$= \frac{1}{n\pi} \left[-2\cos\left(3n\frac{2\pi}{5}\right) + 1 + \cos\left(5n\frac{2\pi}{5}\right) \right]$$

put

$$b_n = \frac{1}{n\pi} \left[-\cos 3n\omega + 1 + \cos 5n\omega - \cos 3n\omega \right]$$
$$= \frac{1}{n\pi} \left[-2\cos 3n\omega + 1 + \cos 5n\omega \right]$$
$$= \frac{1}{n\pi} \left[-2\cos \left(3n\frac{2\pi}{5}\right) + 1 + \cos \left(5n\frac{2\pi}{5}\right) \right]$$
$$= \frac{1}{n\pi} \left[-2\cos \left(\frac{6\pi n}{5}\right) + 1 + 1 \right]$$
$$= \frac{2}{n\pi} \left[1 - \cos \left(\frac{6\pi n}{5}\right) \right]$$

Amplitude of fundamental component of v is $\sqrt{2 + 12}$

$$v_{f} = \sqrt{a_{1}^{2} + b_{1}^{2}}$$

$$a_{1} = \frac{2}{\pi} \sin\left(\frac{6\pi}{5}\right), \ b_{1} = \frac{2}{\pi} \left(1 - \cos\frac{6\pi}{5}\right)$$

$$v_{f} = \frac{2}{\pi} \sqrt{\sin^{2}\frac{6\pi}{5} + \left(1 - \cos\frac{6\pi}{5}\right)^{2}}$$

$$= 1.20 \text{ Volt}$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

GATE Multiple Choice Questions For Electrical Engineering

By RK Kanodia & Ashish Murolia

Available in Two Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1

UNIT 1	ELECTRIC CIRCUITS & FIELDS	
	1.1 Basic Concepts	1-20
	1.2 Graph Theory	21-42
	1.3 Methods of Analysis	43-63
	1.4 Circuit Theorems	64-85
	1.5 Transient Response	86-113
	1.6 Sinusoidal Steady State Analysis	114-131
	1.7 Circuit Analysis In s-domain	132-151
	1.8 Magnetically Coupled Circuits	152-171
	1.9 Two-port Network	172-192
	1.10 Frequency Response	193-205
	1.11 Three-phase Circuits	206-218
	-	219-236

UNIT 2 SIGNALS & SYSTEMS

2.1 Continuous-Time Signals	237-261
2.2 Continuous-Time Systems	262-281
2.3 Discrete-Time Signal	282-311
2.4 Discrete-Time System	312-331
2.5 The Laplace Transform	332-344
2.6 The Z-transform	345-360
2.7 The Continuous-Time Fourier Transform	361-376
2.8 The Continuous-Time Fourier Series	377-396
2.9 Sampling	397-408

UNIT 3 ELECTRICAL MACHINES

3.1 Transformer	409-438
3.2 DC Generator	439-463
3.3 DC Motor	464-492
3.4 Synchronous Generator	493-519
3.5 Synchronous Motor	520-539
3.6 Induction Motor	540-564
3.7 Single Phase Induction Motor & Special Purpose	565-581
Machines	

UNIT 4 POWER SYSTEM

4.1 Fundamentals of Power Systems	583-607
4.2 Characteristics & Performance of Transmission Lines	608-645
4.3 Load Flow Studies	646-659
4.4 Symmetrical Fault Analysis	660-687
4.5 Symmetrical Components & Unsymmetrical Fault Analysis	688-715
4.6 Power System Stability & Protection	716-740
4.7 Power System Control	741-760
ANSWER KEY	

VOLUME-2

U

NIT 5	CONTROL SYSTEM	
	5.1 Transfer Function	3-24
	5.2 Stability	25-44
	5.3 Time Response	45-65
	5.4 The Root-Locus Technique	66-87
	5.5 Frequency Domain Analysis	88-109
	5.6 Design of Control System	110-114
	5.7 The State Variable Analysis	115-140

UNIT 6 ELECTRICAL & ELECTRONIC MEASUREMENTS

6.1	Measurement & Error	143-159
6.2	Electromechanical Instruments	160-203
6.3	Instrument Transformer	204-211
6.4	Electronic & Digital Instruments	212-218
6.5	Measurement of R, L, C & AC Bridges	219-240
6.6	CRO	241-257

UNIT 7 ANALOG & DIGITAL ELECTRONICS

Diode Circuits	261-285
BJT Biasing & Amplifier	286-319
FET Biasing & Amplifier	320-342
Operational Amplifier	343-380
Number System & Boolean Algebra	381-402
Combinational Logic Circuits	403-425
Sequential Logic Circuits	426-454
Digital Systems	455-472
Microprocessor	473-495
	Diode Circuits BJT Biasing & Amplifier FET Biasing & Amplifier Operational Amplifier Number System & Boolean Algebra Combinational Logic Circuits Sequential Logic Circuits Digital Systems Microprocessor

UNIT 8	POWER ELECTRONICS	
	8.1 Power Semiconductor Devices	499-509
	8.2 Diode Circuits & Rectifiers	510-516
	8.3 Thyristor	517-532
	8.4 Phase Controlled Converters	533-560
	8.5 Choppers	561-575
	8.6 Inverters	576-592
	8.7 AC & DC Drives	593-603

UNIT 9 ENGINEERING MATHEMATICS

9.1	Linear Algebra	607-626
9.2	Differential Calculus	627-650
9.3	Integral Calculus	651-671
9.4	Differential Equation	672-692
9.5	Complex Variable	693-711
9.6	Probability & Statistics	712-730
9.7	Numerical Methods	731-745

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K. Kanodia & Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- > Over 1300 Multiple Choice Questions with full & detailed explanations.
- > Questions are graded in the order of complexity from basic to advanced level.
- Contains all previous year GATE and IES exam questions from various branches
- > Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)-- Available in 2 Volumes
- Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

Upcoming titles in this series

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE GUIDE

Theory, Example and Practice By R. K. Kanodia & Ashish Murolia

GATE GUIDE is an exclusive series of books which provides theory, solved examples & practice exercises for preparing for GATE. A book of this series includes :

- > Brief and explicit theory
- > Problem solving methodology
- > Detailed explanations of examples
- > Practice Exercises

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)
- **Electric Circuit and Fields (For EE)**

Upcoming titles in this series

- Digital Electronics(For EC and EE)
- **Control Systems (For EC and EE)**
- Communication Systems (For EC and EE)